.. hash=ad13eb27292d253de3d416d924dac24661b426d3 .. Generated: 21/09/22 23:05 .. Do not edit! ============================ ``cube_radial_distribution`` ============================ By **Pierre Beaujean** (`pierre.beaujean@unamur.be `_). **Version 0.1** (Development). Synopsis ++++++++ ``cube_radial_distribution`` - Radial distribution .. program:: cube_radial_distribution .. code-block:: console usage: cube_radial_distribution [-h] [-v] [-S] [-c CENTER] [--dr DR] [--n-polar N_POLAR] [--n-azimuthal N_AZIMUTHAL] [-d DATA] infile Positional arguments: .. option:: infile Density cube Optional arguments: .. option:: -h, --help show this help message and exit .. option:: -v, --version show program's version number and exit .. option:: -S, --square square cube before .. option:: -c, --center Center .. option:: --dr Increment of radius .. option:: --n-polar Number of subdivision for the integration over theta .. option:: --n-azimuthal Number of subdivision for the integration over phi .. option:: -d, --data data of the cube More information ++++++++++++++++ Report the radial distribution of a cube around a given center [by default :math:`(0,0,0)`]. .. note:: Please cite `[P. Beaujean and B. Champagne, Inorg. Chem. 2022, 61, 1928] `_, if you use this program. This publication also showcase the kind of results you can expect and the analysis that may be extracted. The charge in a given region of the space, located by :math:`\mathbf{r}` and in an element of volume :math:`d\mathbf{r}`, is given by .. math:: q(\mathbf{r}) = \rho(\mathbf{r})\,d\mathbf{r}. Integration over whole space gives the number of particles, :math:`Q`. In spherical coordinates, :math:`d\mathbf{r} = r^2\sin{\theta}\,dr\,d\theta\,d\phi`, this integral becomes .. math:: Q = \int_0^{2\pi}\int_0^{\pi}\int_0^{\infty} \rho(r,\theta,\phi)\,r^2\,\sin{\theta}\,dr\,d\theta\,d\phi. Thus, the radial distribution is given by .. math:: :label: tr \frac{dQ(r)}{dr} = r^2\,\int_0^{2\pi}\int_0^{\pi} \rho(r,\theta,\phi)\sin{\theta}\,d\theta\,d\phi, Equation :eq:`tr` is obtained numerically by interpolation over the cube.